4.4.19. При эксплуатации конденсационной установки должны производиться:

профилактические мероприятия по предотвращению загрязнений конденсатора (обработка охлаждаюшей воды химическими и физическими методами, применение шарикоочистных установок и т.п.);
периодические чистки конденсаторов при повышении давления отработавшего пара по сравнению с нормативными значениями на 0,005 кгс/см2 (0,5 кПа) из-за загрязнения поверхностей охлаждения;
контроль за чистотой поверхности охлаждения и трубных досок конденсатора;
контроль за расходом охлаждающей воды (непосредственным измерением расхода или по тепловому балансу конденсаторов), оптимизация расхода охлаждающей воды в соответствии с ее температурой и паровой нагрузкой конденсатора;
проверка плотности вакуумной системы и ее уплотнение; присосы воздуха (кг/ч) в диапазоне изменения паровой нагрузки конденсатора 40-100% должны быть не выше значений, определяемых по формуле
Св = 8 + 0,065 N,
где N – номинальная электрическая мощность турбоустановки на конденсационном режиме, МВт;

  • проверка водяной плотности конденсатора путем

систематического контроля солесодержания конденсата;

  • проверка содержания кислорода в конденсате

после конденсатных насосов.
Методы контроля за работой конденсационной установки, его периодичность определяются местной инструкцией в зависимости от конкретных условий эксплуатации.
Выполнение указанных требований обеспечивает надежность и экономичность работы турбоустановки.
Загрязнение поверхности конденсаторных трубок отложениями солевого или биологического характера (обычно со стороны охлаждающей воды) увеличивает температурный напор в конденсаторе и соответственно давление от-
работавшего пара. Ухудшение вакуума по сравнению с нор. мативным значением, соответствующим чистой поверхности трубок, приводит к значительному снижению экономичности турбоустановки, а иногда и к ограничению мощности турбины. Например, для турбин с параметрами свежего пара 240 кгс/см2, 540°С ухудшение вакуума на 1% приводит к увеличению удельного расхода тепла примерно на 0,9-1,5% при номинальной нагрузке турбоагрегата. В связи с этим при эксплуатации турбины должен осуществляться тщательный контроль чистоты поверхности конденсаторов и должны приниматься своевременные меры к ее очистке.
Загрязнение трубных досок конденсатора увеличивает его гидравлическое сопротивление, из-за чего уменьшается расход охлаждающей воды и ухудшается вакуум. Поэтому следует контролировать гидравлическое сопротивление по перепаду давлений на входе в конденсатор и выходе из него при определенном расходе охлаждающей воды. При превышении нормативного сопротивления должна производиться чистка.
Следует учитывать, что периодические очистки трубок конденсаторов не решают полностью задачи поддержания максимально возможной экономичности. Постепенный рост количества отложений на трубках, образующихся в период между двумя чистками, приводит к работе турбины с некоторым вакуумом, более низким, чем вакуум при чистом конденсаторе. Кроме того, для высококачественной очистки трубок требуются останов или снижение нагрузки турбины и значительные трудозатраты. Поэтому очень важно проводить профилактические мероприятия, предотвращающие загрязнение трубок конденсаторов и связанное с ним ухудшение вакуума.
Эти мероприятия определяются в зависимости от характера и состава отложений.
При органическом загрязнении трубок на поверхности трубной системы с водяной стороны оседают микроорганизмы и водоросли, содержащиеся в циркуляционной воде, забираемой из естественных или искусственных водоемов. Под влиянием благоприятных температурных условий в конденсаторе микроорганизмы, закрепившиеся на поверхности трубок, начинают постепенно разрастаться, образуя с течением времени значительный слой слизистых отложений, ухудшающий теплопередачу от пара к воде (увеличение температурного напора). Кроме того, уменьшается сечение трубок, что ведет к увеличению гидравлического сопротивления конденсатора и уменьшению расхода воды через него.
Эффективным средством борьбы с органическими отложениями является обработка циркуляционной воды хлором или медным купоросом. При этом поверхность трубок активируется хлором или купоросом и становится токсичной для микроорганизмов. Перед переходом к систематической обработке циркуляционной воды реагентами необходимо произвести тщательную механическую или гидромеханическую очистку трубок, так как в этом случае эффективность профилактических мероприятий будет выше.
Плотные неорганические отложения (накипь) появляются в конденсаторе при повышенном содержании в циркуляционной воде солей жесткости Са(НСО3)2 и Мд(НСО3)2. Подобные условия часто создаются в оборотных системах водоснабжения, где за счет испарения воды и подпитки системы водой, содержащей соли, растет со-лесодержание циркуляционной воды и при достижении предельного значения карбонатной жесткости начинается распад бикарбонатов с отложением солей на поверхности трубок конденсатора.
Профилактическими мероприятиями против образования неорганических отложений являются организация рационального режима продувки и подпитки систем оборотного водоснабжения, а также проведение химической обработки воды — фосфатирование или подкисление. Применение химических способов улучшения качества циркуляционной воды приводит к необходимости обработки больших количеств воды и требует значительных затрат, поэтому в настоящее время все большее распространение получает метод непрерывной механической очистки трубок конденсаторов резиновыми шариками. Опыт работы электростанций с внедренными установками шариковой очистки конденсаторных трубок показал высокую эффективность данного метода для профилактики загрязнений как неорганического, так и органического характера.
Установленный ПТЭ предел ухудшения вакуума по сравнению с нормативным на 0,5%, после достижения которого должна производиться чистка конденсатора, до известной степени условен, однако им следует руководствоваться для предотвращения чрезмерного снижения экономичности турбоустановки и установления периодичности проведения чистки конденсаторов на электростанции.
Расход охлаждающей воды контролируется непосредственным измерением с помощью сегментных диафрагм, применяемых для водоводов больших диаметров, или определяется из теплового баланса конденсатора по нагреву воды и расходу отработавшего пара. Измерение расхода охлаждающей воды позволяет также контролировать состояние циркуляционных насосов по их характеристикам.
Присосы воздуха через неплотности конденсатора и вакуумной системы турбоустановки оказывают влияние на процесс теплопередачи с паровой стороны трубок конденсатора, увеличивая температурный напор, а также на содержание кислорода в конденсате отработавшего пара.
Создание абсолютной плотности конденсатора и вакуумной системы турбоустановки невозможно. Присос воздуха происходит через различные неплотности в стыках сопрягаемых деталей, фланцевом разъеме ЦНД, фланцевых соединениях трубопроводов, находящихся под вакуумом, в арматуре, через концевые уплотнения турбины при их неудовлетворительной работе. При этом количество присасываемого воздуха зависит от нагрузки турбины. При уменьшении пропуска пара в конденсатор вдвое по сравнению с номинальным режимом присос воздуха может возрасти на 30 — 40% за счет увеличения количества узлов турбоагрегата, работающих под разрежением (регенеративных подогревателей и др.).
В случае применения пароструйных эжекторов возможен их переход на перегрузочный режим, когда количество присасываемого воздуха превышает рабочую производительность эжектора. При этом ухудшается вакуум в конденсаторе и увеличивается содержание кислорода в конденсате. При применении водоструйных эжекторов повышение давления в конденсаторе меньше, чем при применении пароструйных эжекторов, так как при больших присосах они не срываются, а продолжают устойчиво работать в соответствии со своей характеристикой на сухом воздухе.
В основу предписываемых ПТЭ максимально допустимых значений присосов воздуха положены практически достигнутые в эксплуатации значения. Плотность вакуумной системы оценивается непосредственным измерением количества воздуха, отсасываемого пароструйным эжектором, с помощью дроссельного расходомерного устройства. Для установок с водоструйными эжекторами, в которых непосредственное измерение расхода отсасываемого воздуха невозможно, используется характеристика эжектора — зависимость давления на стороне всасывания эжектора от расхода воздуха. При обнаружении больших присосов воздуха следует выявить все неплотности и устранить их в кратчайший срок. Выявление мест присосов производится на работающей машине с помощью галоидных течеискателей, на остановленной – путем залива вакуумной системы водой и визуального осмотра. Высокоэффективным способом отыскания неплотностей вакуумной системы является паровая опрессовка.
Одной из важных задач обеспечения надежности эксплуатации является поддержание требуемого качества конденсата. Источником загрязнения конденсата могут явиться неплотности трубной системы конденсаторов, через которые охлаждающая вода, давление которой значительно выше давления в паровом пространстве конденсатора, попадает в конденсат. Количество присасываемой циркуляционной воды может быть незначительным, но даже малое ее количество достаточно, чтобы вывести конденсат турбины по жесткости за пределы, разрешенные ПТЭ. Так, для турбины К-300-240 присос циркуляционной воды, имеющей жесткость, например, 300 мг/л (чистая речная, озерная вода), в количестве 8-10 л/ч уже является недопустимым. Контроль присосов циркуляционной воды ведется путем химического анализа конденсата на жесткость.
Неплотности трубной системы могут возникать в местах развальцовки трубок в трубных досках из-за дефектов вальцовки, в самих трубках могут появляться трещины и изъязвления материала как следствие агрессивного действия воды.
Для обеспечения плотности вальцовочных соединений применяется нанесение на трубные доски конденсаторов уплотняющих покрытий (битумного покрытия, гуммирования). Уменьшение вероятности повреждения металла по длине трубок обеспечивается выбором материала трубок в соответствии с качеством охлаждающей воды.
При наличии в конденсате коррозионно-активных газов, в частности кислорода, трубопроводы и оборудование, расположенные на участке от конденсатора до деаэратора, подвергаются коррозии. Продукты коррозии, выносимые в деаэратор, а оттуда в котел, откладываясь на поверхностях нагрева, создают предпосылки для тяжелых аварий из-за пережога труб,
Как правило, конденсаторы обладают удовлетворительной деаэрирующей способностью и обеспечивают содержание кислорода в конденсате после конденсатора в пределах норм, предписываемых ПТЭ. Однако при неплотности находящегося под вакуумом тракта до конденсатных насосов возможны присосы воздуха и поглощение кислорода деаэрированным в конденсаторе конденсатом. Присосы воздуха в трубопроводы конденсата, т.е. непосредственно в воду, наиболее опасны, так как даже незначительного количества подсасываемого воздуха достаточно для заражения всего потока конденсата.
Постоянный контроль содержания кислорода в конденсате обеспечивает возможность своевременного принятия мер к предотвращению коррозии металла по тракту конденсата. Контроль содержания кислорода в конденсате производится путем химического анализа отбираемой пробы. Проба конденсата отбирается после конденсатных насосов, таким образом, под контролем оказывается весь находящийся под вакуумом всасывающий тракт от конденсатора до насоса.
Присосы воздуха на всасывающем тракте конденсатного насоса могут происходить в сварных соединениях при их некачественном исполнении, через неплотности фланцевых соединений трубопроводов, сальники штоков задвижек. Неплотности должны устраняться повторной сваркой соединений, установкой во фланцевые соединения прокладок, организацией гидравлических уплотнений штоков задвижек, использованием вакуумной арматуры и др.

Что-то про

Работаю в сфере энергетики с 1998 года....